Review Article CODEN: AJPCFF ISSN: 2321 – 0915

Asian Journal of Phytomedicine and Clinical Research

Journal home page: www.ajpcrjournal.com

FOOD BORNE DISEASES AN OVERVIEW

K. Suvetha*1 and M. Shankar2

ABSTRACT

The food borne diseases is rapidly changing their epidemiology. Recently described pathogens, such as Escherichia coli and the epidemic strain of Salmonella serotype Typhimurium Definitive Type 104 have become important public health problems. Well- recognized pathogens, such as Salmonella serotype Enteritidis, have increased in prevalence or become associated with new vehicles. Emergence in food borne diseases is driven by the same forces as emergence in other infectious diseases: changes in demographic characteristics, human behavior, industry, and technology; the shift toward a global economy; microbial adaptation; and the breakdown in the public health infrastructure. Addressing emerging food borne diseases will require more sensitive and enhanced methods of laboratory identification and sub typing, and effective prevention and control. The epidemiology of food borne disease is changing. New pathogens have the contamination of human food with sewage or animal manure.

KEYWORDS

E. coli, Pathogens, Disease and Contamination.

Author for Correspondence

K. Suvetha, Department of Microbiology, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati-517561, Andhra Pradesh, India.

Email: shankarmanichellappa@gmail.com.

INTRODUCTION

Food borne illness is any illness resulting from the consumption of contaminated food, pathogenic bacteria, viruses, or parasites that contaminate food, as well as chemical or natural toxins such as poisonous mushrooms. It also referred to food poisoning. Food borne illness usually arises from improper handling, preparation, or food storage. Bacteria are a common cause of food borne illness. Here we are mainly discussing about four food borne pathogens Campylobacter Jejuni, E.coli, Vibrio vulnificus and Listeria monocytogene. Some

^{*1}Department of Microbiology, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati-517561, Andhra Pradesh, India.

²Department of Pharmaceutical Chemistry, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati-517561, Andhra Pradesh, India.

types of microbes stay in the intestine, some produce a toxin that is absorbed into the bloodstream, and some can directly invade deeper body tissues^{1, 2}.

Campylobacter Jejuni

Campylobacter jejuni, an emerging food borne pathogen not recognized as a cause of human illness until the late 1970 is now considered the leading cause of food borne bacterial infection. An estimated four million C. jejuni infection occurs each year in the United States; most sporadic infections are associated with improper preparation or consumption of mishandled poultry products. Incidence of campylo bacteriosis is particularly high among young men. The high incidence of disease in this group may reflect poor food preparation skills. Most C. jejuni out- breaks, which are far less common than sporadic illnesses, are associated with consumption of raw milk or unchlorinated water⁴.

The Guillain-Barré syndrome, an acute paralytic illness that may leave chronic deficits, may follow Campylobacter infections³. In a multicenter study of 118 patients with Guillain- Barré syndrome in the United States, 36 % had serologic evidence of C. jejuni infection in the weeks before neurologic symptoms developed⁸.

E. coli O157:H7

E. coli O157:H7 was first recognized as a human pathogen in 1982 when two outbreaks in the United States were associated with consumption of undercooked hamburgers from a fast-food restaurant chain ⁸. The pathogen has since emerged as a major cause of bloody and non- bloody diarrhea, causing as many as 20,000 cases and 250 deaths per year in the United States^{9,8}. Outbreaks have been reported in Canada, Japan, Africa, the United Kingdom, and else- where. In addition to causing bloody diarrhea, E. coli O157:H7 infection is the most common cause of the hemolytic uremic syndrome, the leading cause of acute kidney failure in children in the United States. The syndrome is associated with long-term complications; 3 % to 5 % of patients with hemolytic uremic syndrome die, and approximately 12 % have sequelae

including end-stage renal disease, hypertension and neurologic injury⁸. Consumption of ground beef, lettuce¹⁰, raw cider ¹¹, raw milk, and untreated water have been implicated in outbreaks, and person-to-person transmission is well documented.

Vibrio vulnificus

In the late 1970s, Vibrio vulnificus was recognized to cause a usually severe syndrome of food borne V. vulnificus infection called primary septicemia. V. vulnificus primary septicemia generally affects people with underlying disease, particularly liver disease. Patients become ill within 7 days after eating raw molluscan shell- fish. Trace backs implicate shellfish harvested from warm water areas. The symptoms may include shock and bullous skin lesions and may quickly progress to shellfish associated death. Most reported V. vulnificus infections are fatal¹².

Listeria monocytogenes

Since the early 1980s, food borne transmission has been recognized as a major source of human listeriosis ¹³. Listeriosis can cause stillbirths, miscarriages, meningitis, or sepsis in immunocompromised hosts. Case-fatality rates as high as 40 % have been reported during outbreaks. Outbreaks have been associated with ready-to- eat including cole slaw, milk probably contaminated after pasteurization, pate, pork tongue in jelly, and soft cheese made with inadequately pasteurized milk. The U.S. Department of Agriculture and U.S. Food and Drug Administration established zero tolerance policies for L. monocytogenes in foods in 1989. From 1989 to 1993, the food industry launched efforts to reduce Listeria contamination in processed foods, and dietary recommendations were established and publicized for persons at increased risk for invasive listeriosis. During this 4-year interval, the incidence of listeriosis declined by 40 % in nine surveillance areas across the United States 14.

Prevention of food borne diseases

Meeting the complex challenge of food borne disease prevention will require the collaboration of regulatory agencies and industry to make food safely and keep it safe throughout the industrial chain of production. Prevention can be built into the industry by identifying and controlling the key points from field, farm, or fishing ground to the dinner table at which contamination can either occur or be eliminated. The general strategy known as Hazard Analysis and Critical Control Points (HACCP) replaces the strategy of final product inspection. Some simple control strategies are selfevident, once the reality of microbial contamination is recognized. For example, shipping fruit from Central America with clean ice or in closed refrigerator trucks, rather than with ice made from untreated river water, is common sense. Similarly, requiring oyster harvesters to use toilets with holding tanks on their oyster boats is an obvious way to reduce fecal contamination of shallow oyster beds. Pasteurization provides the extra barrier that will prevent E. coli O157:H7 and other pathogens from contaminating a large batch of freshly squeezed juice.

For many food borne diseases, multiple choices for prevention are available, and the best answer may be to apply several steps simultaneously. For E. coli O157:H7 infections related to the cattle reservoir, pasteurizing milk and cooking meat thoroughly provide an important measure of protection but are insufficient by themselves. Options for better control include continued improvements slaughter plant hygiene and control measures under HACCP, developing additives to cattle feed that alter the microbial growth either in the feed or in the bovine rumen to make cows less hospitable hosts for E. coli O157, immunizing or otherwise protecting the cows so that they do not become infected in the first place, and irradiating beef after slaughter. For C. jejuni infections related to the poultry reservoir, future control options may include modification of the slaughter process to reduce contamination of chicken carcasses by bile or by water baths, freezing chicken carcasses to reduce Campylobacter counts, chlorinating the water that chickens drink to prevent them from getting infected, vaccinating chickens, irradiating poultry carcasses after slaughter.

Outbreaks are often fertile sources of new research

questions. Translating these questions into research agendas is an important part of the overall prevention effort. Applied research is needed to improve strategies of subtyping and surveillance. Veterinary and agricultural re- search on the farm is needed to answer the questions about whether and how a pathogen such as E. coli O157:H7 persists in the bovine reservoir, to establish the size and dynamics of a reservoir for this organism in wild deer, and to look at potential routes of contamination connecting animal manure and lettuce fields. More research is needed regarding foods defined as sources in large outbreaks to develop better control strategies and better barriers to contamination and microbial growth and to understand the behavior of new pathogens in specific foods. Research is also needed to improve the diagnosis, clinical management and treatment of severe food borne infections and to improve our understanding of the pathogenesis of new and emerging pathogens. To assess and evaluate potential prevention strategies, applied research is needed into the costs and potential benefits of each or of combinations 15,16.

Risk Assessment and International Food Standards

The movement of ever-increasing quantities of food across borders has resulted in a transnationalization of disease risk¹⁷. Therefore, the globalization of food trade and the open access to foreign markets need to be accompanied by effective means of health protection for populations. In the food sector, international regulatory instruments need to be integrated with strengthened surveillance and monitoring.

As a result of the Uruguay Round of Multilateral Trade Negotiations and the in-creased liberalization of trade facilitated by this agreement, concern about the safety of imported food has grown. However, provisions in the Agreement on the Application of Sanitary and Phyto sanitary Measures, which entered into force with the establishment of the World Trade Organization on January 1, 1995, are designed to address these concerns: according to the work of the Codex

Alimentarius Commission, its standards, guidelines, and recommendations are recognized as the reference for national food safety requirements. Countries that are members of the World Trade Organization may no longer be able to reject foods that meet Codex standards, guidelines, and recommendations without providing justification. Moreover, the increased volume of the global food trade underscores the need for sound epidemiologic information and international risk assessment. In this regard, Article 5 of the Sanitary and Phytosanitary Measures agreement explicitly requires World Trade Organization members to conduct scientific and consistent risk assessments. Furthermore, the World Health Organization has recommended that the application of the HACCP system at every stage of the food chain represents an effective approach for governments to meet the terms outlined in the agreement ¹⁸.

Another issue receiving more attention from regulatory agencies and underlined during the Food Agriculture Organization/World Organization Conference on Food Standards, Chemicals in Food, and Food Trade (1991), is the scientific basis of the Codex standards. The Conference recommended that the Codex, in its norm-setting work on health and safety, place risk greater emphasis on assessment¹⁹. Epidemiologic data on food borne diseases have an important role in risk assessment. One example is assessing the risk of contracting listeriosis associated with different levels of Listeria monocytogenes in smoked fish and meat products ²⁰. However, the need for risk assessment as the basis for setting standards has shown a great gap in knowledge about food borne pathogens and their relation to human illness ²¹⁻²². To address the national/ transnational risks caused by food borne narrowed. diseases. this gap must be

CONCLUSION

The globalization of the risks associated with food borne illness, specifically increased international travel and trade in food, has resulted in greater interdependence in terms of food safety. Therefore, internationally agreed-upon food safety standards and other types of agreements are becoming increasingly important in addressing the complex transnational challenge of food borne disease control. Epidemiologic data provide a common ground for reaching international consensus on food safety issues.

As Morris Potter has said, If one recognizes that ensuring food safety is inherently uncertain, food borne illnesses be- come opportunities to learn rather than failures to predict. Food borne disease will occur, and we must be prepared to react quickly to reduce the risk of new food borne hazards ²³.

ACKNOWLEDGEMENT

I am thankful to Seven Hills College of Pharmacy, India for providing facility to carry out the research work.

REFERENCES

- 1. Food poisoning at dorland's medical dictionary.
- 2. US UDC food poisoning guide.
- 3. Mishu B, Ilyas AA, Koski CL, Vriesendorp F, Cook SD, Mithen FA. Serologic evidence of previous Campylobacter jejuni infection in patients with the Guillain-Barré syndrome, *Ann Intern Med*, 118, 1993, 947-953.
- 4. Tauxe RV. Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations, Campylobacter jejuni Current Status and Future Trends. American Society for Washington, *Microbiology*, 1992.
- 5. Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JB, Davis B. Hemorrhagic colitis associated with a rare Escherichia coli serotype. *N Engl J Med*, 308, 1983, 681-685.
- 6. Ackers M, Mahon B, Leahy E, Damrow T, Hutwagner L, Barrett T. An outbreak of Escherichia coli O157:H7 infections associated with leaf lettuce consumption, Proceedings of the 36th *Inter science Conference on Antimicrobial Agents and Chemotherapy*, 1996, 15-18.

- 7. Besser RE, Lett SM, Weber T, Doyle MP, Barrett TJ, Wells JG. An outbreak of diarrhea and hemolytic, uremic syndrome from Escherichia coli O157:H7 in fresh pressed apple cider, *JAMA*, 269, 1993, 2217-2220.
- 8. Boyce TG, Swerdlow DL, Griffin PM. Escherichia coli O157:H7 and the hemolyticuremic syndrome. *N Engl J Med* 333, 1985, 364-368.
- 9. Council for Agricultural Science and Technology. Food borne pathogens: risks and consequences, Ames-The Council; 1994. *Task Force Report*, 122.
- 10. Altekruse SF, Hyman FH, Klontz KC, Timbo BT, Tollefson LK. Food borne bacterial infections in individuals with the human immunodeficiency virus. *South Med J*, 87, 1994, 169-173.
- 11. Swerdlow DL, Lee LA, Tauxe RV, Bean NH, Jarvis JQ. Reactive arthropathy following a multistate outbreak of Salmonella typhimurium infections. Proceedings of the 30th Inter science Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiology, 1990, 21-24; Atlanta.
- 12. Blake PA, Merson MH, Weaver RE, Hollis DG, Heublin PC. Disease caused by a marine Vibrio. Clinical characteristics and epidemiology, *N Engl J Med*, 300, 1979, 1-3.
- 13. Schuchat A, Swaminathan B, Broome CV. Epidemiology of human listeriosis. *Clin Microbiol Rev*, 4, 1991, 169-183.
- 14. Tappero JW, Schuchat A, Deaver KA, Mascola L, Wenger JD. Reduction in the incidence of

- human. listeriosis in the United States. Effectiveness of prevention efforts, *JAMA*, 273, 1995, 1118-1122.
- 15. Tauxe RV, Vandepitte J, Wauters G, Martin SM, Goosens V, DeMol P. Yersinia enterocolitica infections and pork, *Lancet*, 1, 1987, 1129-1132.
- 16. World Health Organization. Worldwide spread of infections with Yersinia enterocolitica. *WHO Chronicle*, 30, 1976, 494-496.
- 17. Nakajima H. Global disease threats and foreign policy. Brown Journal of World Affairs. *In press*, 1997.
- 18. WTO. Selected World Health Organization activities relevant to the application of sanitary and phytosanitary measures. Geneva, *WTO*, 1995, 37.
- 19. FAO/WHO. Report of the Joint FAO/WHO Conference on Food Standards, *Chemicals in Food and Food Trade, Rome*, 1991.
- 20. Van Schothorst M. Sampling plan for Listeria monocytogenes. *Food Control*, 7, 1996, 203-208.
- 21. FAO/WHO. Report of the Joint FAO/WHO Expert Consultation on Application of Risk Analysis to Food Standards Issues, *Geneva*, 1995, 13-17.
- 22. FAO/WHO. Report of the Joint FAO/WHO Expert Consultation on Risk Management and Food Safety Issues, *Rome*, 1997 27-31.
- Potter M, Gonzalez-Ayala S, Silarug N. The epidemiology of foodborne diseases. Fundamentals of Food Microbiology. American Society for Microbiology, Washington, 1997.